綜合與實踐
【課本再現(xiàn)】在一次課題學習活動中,老師提出了如下問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點,∠AEF=90°,且EF交正方形外角平分線CF于點F.請你探究AE與EF存在怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
經(jīng)過探究,小明得出的結(jié)論是AE=EF.而要證明結(jié)論AE=EF,就需要證明AE和EF所在的兩個三角形全等,但△ABE和△ECF顯然不全等(一個是直角三角形,一個是鈍角三角形),考慮到點E是邊BC的中點,小明想到的方法是如圖2,取AB的中點M,連接EM,證明△AEM≌△EFC.從而得到AE=EF.
(1)小明的證法中,證明△AEM≌△EFC的條件可以為 CC.
A.邊邊邊 B.邊角邊 C.角邊角 D.斜邊直角邊
【類比遷移】
(2)如圖3,若把條件“點E是邊BC的中點”改為“點E是邊BC上的任意一點”,其余條件不變,AE=EF是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由.
(3)如圖4,如果點E是邊BC延長線上的任意一點,其他條件不變,AE=EF是否仍然成立?是是(填“是”或“否”,不需證明);
【拓展應(yīng)用】
(4)已知:四邊形ABCD是正方形,點E是直線BC上的一點,∠AEF=90°,且EF交正方形外角平分線CF于點F,若AB=4,CE=2,則EF的長為 25或21325或213.

2
5
2
13
2
5
2
13
【考點】四邊形綜合題.
【答案】C;是;或
2
5
2
13
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/4 8:0:9組卷:241引用:4難度:0.5
相似題
-
1.如圖,在菱形ABCD中,∠ABC=60°,AB=2.過點A作對角線BD的平行線與邊CD的延長線相交于點E.P為邊BD上的一個動點(不與端點B,D重合),連接PA,PE,AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)求四邊形ABDE的周長和面積;
(3)記△ABP的周長和面積分別為C1和S1,△PDE的周長和面積分別為C2和S2,在點P的運動過程中,試探究下列兩個式子的值或范圍:①C1+C2,②S1+S2,如果是定值的,請直接寫出這個定值;如果不是定值的,請直接寫出它的取值范圍.發(fā)布:2025/1/28 8:0:2組卷:574引用:1難度:0.2 -
2.如圖,在菱形ABCD中,AB=10,sinB=
,點E從點B出發(fā)沿折線B-C-D向終點D運動.過點E作點E所在的邊(BC或CD)的垂線,交菱形其它的邊于點F,在EF的右側(cè)作矩形EFGH.35
(1)如圖1,點G在AC上.求證:FA=FG.
(2)若EF=FG,當EF過AC中點時,求AG的長.
(3)已知FG=8,設(shè)點E的運動路程為s.當s滿足什么條件時,以G,C,H為頂點的三角形與△BEF相似(包括全等)?發(fā)布:2025/1/28 8:0:2組卷:2008引用:3難度:0.1 -
3.如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=
,點P是射線BC上一點(不與點B重合),AP與對角線BD交于點E,連接EC.55
(1)求證:AE=CE;
(2)當點P在線段BC上時,設(shè)BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當點P在線段BC的延長線上時,若△PEC是直角三角形,請直接寫出BP的長.發(fā)布:2025/1/28 8:0:2組卷:254引用:1難度:0.1
相關(guān)試卷