我們已經(jīng)學(xué)習(xí)了利用配方法解一元二次方程,其實配方法還有其他重要應(yīng)用.
例:已知x可取任何實數(shù),試求二次三項式x2+6x-1最小值.
解:x2+6x-1
=x2+2×3?x+32-32-1
=(x+3)2-10
∵無論x取何實數(shù),總有(x+3)2≥0.
∵(x+3)2-10≥-10,即x2+6x-1的最小值是-10.
即無論x取何實數(shù),x2+6x-1的值總是不小于-10的實數(shù).
問題:
(1)已知y=x2-4x+7,求證y是正數(shù).
知識遷移:
(2)如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=4cm,點P在邊AC上,從點A向點C以3cm/s的速度移動,點Q在CB邊上以2cm/s的速度從點C向點B移動.若點P,Q同時出發(fā),且當(dāng)一點移動到終點時,另一點也隨之停止,設(shè)△PCQ的面積為S cm2,運動時間為t秒,求S的最大值.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:114引用:2難度:0.5
相似題
-
1.已知代數(shù)式-a2+2a-1,無論a取任何值,它的值一定是( ?。?/h2>
發(fā)布:2024/12/12 8:0:1組卷:108引用:3難度:0.7 -
2.已知a,b,c滿足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,則a2+b2+c2等于( ?。?/h2>
發(fā)布:2024/12/23 12:30:2組卷:364引用:9難度:0.4 -
3.若把代數(shù)式x2+2x-2化為(x+m)2+k的形式,其中m,k為常數(shù),則m+k的值為( ?。?/h2>
發(fā)布:2024/12/16 14:30:3組卷:102引用:3難度:0.9