如圖,在平面直角坐標(biāo)系中,拋物線y=x2+14與y軸相交于點(diǎn)A,點(diǎn)B與點(diǎn)O關(guān)于點(diǎn)A對稱.
(1)填空:拋物線頂點(diǎn)A的坐標(biāo) (0,14)(0,14),B的坐標(biāo)為 (0,12)(0,12);
(2)過點(diǎn)B的直線y=kx+b(其中k<0)與x軸相交于點(diǎn)C,過點(diǎn)C作直線l平行于y軸,P是直線l上一點(diǎn),且PB=PC,求線段PB的長(用含k的式子表示),并判斷點(diǎn)P是否在拋物線上,說明理由.
1
4
1
4
1
4
1
2
1
2
【考點(diǎn)】二次函數(shù)圖象與幾何變換;二次函數(shù)的性質(zhì);二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.
【答案】(0,);(0,)
1
4
1
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:246引用:1難度:0.1