已知直線l:x=my-1,圓C:x2+y2+4x=0.
(1)證明:直線l與圓C相交;
(2)設l與C的兩個交點分別為A、B,弦AB的中點為M,求點M的軌跡方程;
(3)在(2)的條件下,設圓C在點A處的切線為l1,在點B處的切線為l2,l1與l2的交點為Q.試探究:當m變化時,點Q是否恒在一條定直線上?若是,請求出這條直線的方程;若不是,說明理由.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/27 8:0:9組卷:824引用:9難度:0.3
相似題
-
1.在平面直角坐標系xOy中,已知直線ax-y+2=0與圓C:x2+y2-2x-3=0交于A,B兩點,若鈍角△ABC的面積為
,則實數a的值是( ?。?/h2>3發(fā)布:2025/1/5 18:30:5組卷:110難度:0.6 -
2.已知x,y滿足x2+y2=1,則
的最小值為( ?。?/h2>y-2x-1發(fā)布:2024/12/29 10:30:1組卷:28引用:2難度:0.9 -
3.已知圓C:x2+y2+2ay=0(a>0)截直線
所得的弦長為3x-y=0,則圓C與圓C':(x-1)2+(y+1)2=1的位置關系是( ?。?/h2>23發(fā)布:2025/1/1 11:0:5組卷:86引用:4難度:0.6