【情境建?!浚?)蘇科版教材八年級上冊第60頁,研究了等腰三角形的軸對稱性,我們知道“等腰三角形底邊上的高線、中線和頂角平分線重合”,簡稱“三線合一”.
小明嘗試著逆向思考:若三角形一個角的平分線與這個角對邊上的高重合,則這個三角形是等腰三角形.如圖1,已知,點D在△ABC的邊BC上,AD平分∠BAC,且AD⊥BC,求證:AB=AC.請你幫助小明完成證明.
請嘗試直接應用“情境建?!敝行∶鞣此汲龅慕Y(jié)論解決下列問題:
【理解內(nèi)化】(2)①如圖2,在△ABC中,AD是角平分線,過點B作AD的垂線交AD、AC于點E、F,∠ABF=2∠C,求證:BE=12(AC-AB).
②如圖3,在四邊形ABDC中,BC=7,AC-AB=2,AD平分∠CAB,AD⊥CD,當△BCD的面積最大時,請直接寫出此時CD的長.
【拓展應用】(3)如圖4,△ABC是兩條公路岔路口綠化施工的一塊區(qū)域示意圖,其中∠ACB=90°,AC=15m,BC=20m,該綠化帶中修建了健身步道.OA、OB、OM、ON、MN,其中入口M、N分別在AC、BC上,步道OA、OB分別平分∠BAC和∠ABC,OM⊥OA,ON⊥OB.現(xiàn)要用圍擋完全封閉△CMN區(qū)域,修建地下排水和地上公益廣告等設(shè)施,請直接寫出圍擋的長度.(步道寬度和接頭忽略不計)

BE
=
1
2
(
AC
-
AB
)
BC
=
7
AC
-
AB
=
2
【考點】四邊形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/12 2:0:2組卷:319引用:1難度:0.5
相似題
-
1.如圖,在菱形ABCD中,∠ABC=60°,AB=2.過點A作對角線BD的平行線與邊CD的延長線相交于點E.P為邊BD上的一個動點(不與端點B,D重合),連接PA,PE,AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)求四邊形ABDE的周長和面積;
(3)記△ABP的周長和面積分別為C1和S1,△PDE的周長和面積分別為C2和S2,在點P的運動過程中,試探究下列兩個式子的值或范圍:①C1+C2,②S1+S2,如果是定值的,請直接寫出這個定值;如果不是定值的,請直接寫出它的取值范圍.發(fā)布:2025/1/28 8:0:2組卷:574引用:1難度:0.2 -
2.如圖,在菱形ABCD中,AB=10,sinB=
,點E從點B出發(fā)沿折線B-C-D向終點D運動.過點E作點E所在的邊(BC或CD)的垂線,交菱形其它的邊于點F,在EF的右側(cè)作矩形EFGH.35
(1)如圖1,點G在AC上.求證:FA=FG.
(2)若EF=FG,當EF過AC中點時,求AG的長.
(3)已知FG=8,設(shè)點E的運動路程為s.當s滿足什么條件時,以G,C,H為頂點的三角形與△BEF相似(包括全等)?發(fā)布:2025/1/28 8:0:2組卷:2008引用:3難度:0.1 -
3.如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=
,點P是射線BC上一點(不與點B重合),AP與對角線BD交于點E,連接EC.55
(1)求證:AE=CE;
(2)當點P在線段BC上時,設(shè)BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當點P在線段BC的延長線上時,若△PEC是直角三角形,請直接寫出BP的長.發(fā)布:2025/1/28 8:0:2組卷:254引用:1難度:0.1
相關(guān)試卷