我們知道,函數y=f(x)的圖象關于坐標原點成中心對稱圖形的充要條件是函數y=f(x)為奇函數,有同學發(fā)現可以將其推廣為:函數y=f(x)的圖象關于點P(m,n)成中心對稱圖形的充要條件是函數y=f(x+m)-n為奇函數.若函數f(x)的圖象關于點(1,1)對稱,且當x∈[0,1]時,f(x)=x2-2ax+2a.
(1)求f(0)+f(2)的值;
(2)設函數g(x)=x2-x.
①證明函數g(x)的圖象關于點(2,-1)對稱;
②若對任意x1∈(0,2),總存在x2∈(0,2),使得f(x1)=g(x2)成立,求a的取值范圍.
g
(
x
)
=
x
2
-
x
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/1 6:0:10組卷:66引用:5難度:0.4
相似題
-
1.把符號
稱為二階行列式,規(guī)定它的運算法則為aamp;bcamp;d.已知函數aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數,若對?x∈[-1,1],?θ∈R,都有g(x)-1≥f(θ)恒成立,求實數λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:14難度:0.5 -
2.對于任意x1,x2∈(2,+∞),當x1<x2時,恒有
成立,則實數a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:63引用:3難度:0.6 -
3.設函數f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:538引用:36難度:0.5