(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X,請你作出猜想:當(dāng)∠AMN=(n-2)?180°n(n-2)?180°n時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

(
n
-
2
)
?
180
°
n
(
n
-
2
)
?
180
°
n
【答案】
(
n
-
2
)
?
180
°
n
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1108引用:50難度:0.1
相似題
-
1.如圖,在△ABC中,∠BAC=90°,延長BA到點(diǎn)D,使AD=
AB,點(diǎn)E、F分別為BC、AC的中點(diǎn),請你在圖中找出一組相等關(guān)系,使其滿足上述所有條件,并加以證明.12發(fā)布:2025/1/24 8:0:2組卷:4引用:1難度:0.5 -
2.如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長線上一點(diǎn),點(diǎn)E在線段BC上,且AE=CF.
求證:∠AEB=∠CFB.發(fā)布:2025/1/24 8:0:2組卷:454引用:4難度:0.7 -
3.如圖,在Rt△ABC中,∠C=∠BED=90°,且CD=DE,AD=BD,則∠B=.
發(fā)布:2025/1/28 8:0:2組卷:10引用:0難度:0.7