對于點P,Q和圖形W,給出如下定義:如果圖形W上存在一點R,使QP=QR,∠PQR=90°,則稱點Q為點P關于圖形W的一個“旋垂點”,PQ的長稱為“垂距”.在平面直角坐標系xOy中:
(1)已知點A(0,2),B(2,2),
①在點Q1(1,1),Q2(0,1),Q3(-1,1)中,點O關于點A的“旋垂點”是 Q1,Q3Q1,Q3;
②若點M是點O關于線段AB的“旋垂點”,求點M的橫坐標m的取值范圍;
(2)⊙N的圓心為(n,0),半徑為10,直線y=-3x+23與x軸,y軸分別交于E,F(xiàn)兩點,若在⊙N上存在點P,使得點P關于⊙N的一個“旋垂點”在線段EF上存在,且“垂距”為2,直接寫出n的取值范圍.
10
y
=
-
3
x
+
2
3
2
【考點】圓的綜合題.
【答案】Q1,Q3
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/20 2:0:8組卷:63引用:2難度:0.2
相似題
-
1.如圖,AB是圓O的直徑,弦CD與AB交于點H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1 -
2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點E,直線DB與CE交于點H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點逆時針旋轉,得射線DM,DM與AB交于點M,與圓O及切線CF分別相交于點N,F(xiàn),當GM=GD時,求切線CF的長.發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點,C是弧BD的中點.
(1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數是120度,在半徑OB上是否存在點P,使得PC+PD的值最小,如果存在,請在備用圖中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.發(fā)布:2025/1/28 8:0:2組卷:42難度:0.3