2023年四川省綿陽市南山中學(xué)高考數(shù)學(xué)三診試卷(理科)
發(fā)布:2024/8/11 1:0:1
一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)
-
1.已知集合A={1,3,
},B={1,m},A∪B=A,則m的值為( ?。?/h2>mA.0或 3B.0或3 C.1或 3D.1或3 組卷:14850引用:114難度:0.9 -
2.已知復(fù)數(shù)z=
(i為虛數(shù)單位),則z的共軛復(fù)數(shù)對應(yīng)的點位于復(fù)平面的( ?。?/h2>5i1-2iA.第一象限 B.第二象限 C.第三象限 D.第四象限 組卷:129引用:8難度:0.8 -
3.設(shè)x∈R,則“|x-2|<1”是“x2+x-2>0”的( ?。?/h2>
A.充分而不必要條件 B.必要而不充分條件 C.充要條件 D.既不充分也不必要條件 組卷:4071引用:108難度:0.9 -
4.拋物線y=4x2上的一點M到焦點的距離為1,則點M的縱坐標(biāo)是( )
A. 1716B. 1516C. 78D.0 組卷:753引用:65難度:0.9 -
5.已知
,α為鈍角,sinα=55,則tanβ=( ?。?/h2>tan(α-β)=13A.1 B.-1 C.2 D.-2 組卷:625引用:9難度:0.7 -
6.已知直線m,l,平面α,β,且m⊥α,l?β,給出下列命題:①若α∥β,則m⊥l; ②若α⊥β,則m∥l; ③若m⊥l,則α⊥β; ④若m∥l,則α⊥β.其中正確的命題的是( ?。?/h2>
A.①④ B.③④ C.①② D.①③ 組卷:73引用:8難度:0.7 -
7.函數(shù)
的圖象大致為( )f(x)=xcosxe|x|A. B. C. D. 組卷:247引用:9難度:0.7
(二)選考題(共10分.請考生在第22、23題中任選一題作答.如果多做,則按所做的第一題計分)
-
22.設(shè)A為橢圓C1:
上任意一點,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2-10ρcosθ+24=0,B為C2上任意一點.x24+y224=1
(Ⅰ)寫出C1參數(shù)方程和C2普通方程;
(Ⅱ)求|AB|最大值和最小值.組卷:205引用:6難度:0.6
【選修4—5:不等式選講】
-
23.已知函數(shù)f(x)=|x-2|+a,g(x)=|x+4|,其中a∈R.
(Ⅰ)解不等式f(x)<g(x)+a;
(Ⅱ)任意x∈R,f(x)+g(x)>a2恒成立,求a的取值范圍.組卷:90引用:11難度:0.5