2012-2013學(xué)年湖南省長(zhǎng)沙市長(zhǎng)郡中學(xué)高三(下)4月同步練習(xí)數(shù)學(xué)試卷(文科)(1)
發(fā)布:2024/4/20 14:35:0
一、解答題
-
1.關(guān)于x的一元二次方程x2-2ax+b2=0.
(1)若連續(xù)拋擲兩次骰子得到的點(diǎn)數(shù)分別為a和b,求上述方程有實(shí)根的概率;
(2)若從區(qū)間[0,6]中隨機(jī)取兩個(gè)數(shù)a和b,求上述方程有實(shí)根且a2+b2≤36的概率.組卷:399引用:3難度:0.1 -
2.某校高三某班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如圖,據(jù)此解答如下問(wèn)題:
(1)求分?jǐn)?shù)在[50,60)的頻率及全班的人數(shù);
(2)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(3)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[90,100]之間的概率.組卷:66引用:26難度:0.5
一、解答題
-
5.為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)此班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
喜愛(ài)打籃球 不喜愛(ài)打籃球 合計(jì) 男生 5 女生 10 合計(jì) 50 .35
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;
(2)是否有99.5%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由;
(3)已知喜愛(ài)打籃球的10位女生中,A1,A2,A3,A4,A5還喜歡打羽毛球,B1,B2,B3還喜歡打乒乓球,C1,C2還喜歡踢足球,現(xiàn)再?gòu)南矚g打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進(jìn)行其他方面的調(diào)查,求B1和C1不全被選中的概率.
下面的臨界值表供參考:P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828 ,其中n=a+b+c+d)K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)組卷:873引用:30難度:0.7 -
6.某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日 晝夜溫差
x(℃)10 11 13 12 8 6 就診人數(shù)
y(人)22 25 29 26 16 12
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程y=x+?b;?a
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?組卷:198引用:47難度:0.5