2020-2021學(xué)年山西省朔州市懷仁一中高三(上)強(qiáng)化訓(xùn)練數(shù)學(xué)試卷(文科)(六)
發(fā)布:2024/4/20 14:35:0
一.選擇題(本大題共8小題,每小題5分,共40分)
-
1.已知各項(xiàng)不為0的等差數(shù)列{an}滿足a5-2a72+2a8=0,數(shù)列{bn}是等比數(shù)列且b7=a7,則b2b12等于( ?。?/h2>
組卷:377引用:8難度:0.6 -
2.已知數(shù)列{an}為等比數(shù)列,且a2a3a4=-a72=-64,則
=( ?。?/h2>tan(2a53?π)組卷:148引用:6難度:0.9 -
3.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=22,Sn=330,Sn-4=176,則n=( )
組卷:580引用:4難度:0.5 -
4.已知公差d≠0的等差數(shù)列{an}滿足a1=1,且a2,a4-2,a6成等比數(shù)列,若正整數(shù)m,n滿足m-n=10,則am-an=( ?。?/h2>
組卷:158引用:4難度:0.7
三.解答題
-
13.已知數(shù)列{an}、{bn}滿足a1=1,a2=3,
,bn=an+1-an.bn+1bn=2(n∈N*)
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{cn}滿足cn=log2(an+1)(n∈N*),求.Sn=1c1c3+1c3c5+…+1c2n-1c2n+1組卷:48引用:8難度:0.1 -
14.已知數(shù)列{an}滿足:
,點(diǎn)a4=74在直線(an,an+1)(n∈N*)上,數(shù)列{bn}滿足:y=x+12且b1=-1194.bn=13bn-1+13n(n≥2,n∈N*)
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列{bn-an}為等比數(shù)列;
(Ⅲ)求{bn}的通項(xiàng)公式;并探求數(shù)列{bn}的前n項(xiàng)和的最小值.組卷:26引用:3難度:0.1