2022年四川省涼山州高考數(shù)學(xué)三診試卷(文科)
發(fā)布:2024/4/20 14:35:0
一、選擇題(本大題共12小題,每題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.)
-
1.集合
,B={0,1,2},C={2,3},則A∩(B∪C)=( ?。?/h2>A={x|y=x-1}組卷:45引用:2難度:0.7 -
2.已知復(fù)數(shù)z=1-i,則|1+zi|=( )
組卷:31引用:3難度:0.7 -
3.已知直線l1:2x-y+1=0,l2:x+ay-1=0,且l1⊥l2,點p(1,2)到直線l2的距離d=( )
組卷:299引用:6難度:0.7 -
4.下列選項中,p是q的充分不必要條件的是( )
組卷:47引用:2難度:0.6 -
5.某大型露天體育場館為了倡導(dǎo)綠色可循環(huán)的理念,使整個系統(tǒng)的碳排放量接近于0,場館配備了先進的污水、雨水過濾系統(tǒng).已知過濾過程中廢水的污染排放量N(mg/L)與時間t的關(guān)系為
(N0為最初污染物數(shù)量),如果前3個小時清除了30%的污染物,那么污染物清除至最初的49%還需要( ?。┬r.N=N0e-kt組卷:49引用:2難度:0.8 -
6.如果一雙曲線的實軸及虛軸分別是另一雙曲線的虛軸及實軸,則稱此兩雙曲線互為共軛雙曲線.已知雙曲線C1,C2互為共軛雙曲線,C1的焦點分別為F1,F(xiàn)2,頂點分別為A1,A2,C2的焦點分別為F3,F(xiàn)4,頂點分別為B1,B2,過四個焦點的圓的面積為S1,四邊形A1B1A2B2的面積為S2,則
的最大值為( ?。?/h2>S2S1組卷:33引用:2難度:0.8 -
7.將函數(shù)f(x)=sinωxcosωx的圖象向左平移
個單位,再將縱坐標伸長為原來的4倍(橫坐標不變)得到函數(shù)g(x)的圖象,且g(x)的圖象上一條對稱軸與一個對稱中心的最小距離為π6,對于函數(shù)g(x)有以下幾個結(jié)論:π4
(1)ω=2;
(2)它的圖象關(guān)于直線對稱;x=π12
(3)它的圖象關(guān)于點對稱;(π3,0)
(4)若,則x∈[0,π2].g(x)∈[-3,2]
則上述結(jié)論正確的個數(shù)為( ?。?/h2>組卷:68引用:3難度:0.6
(二)選做題:(共10分,請考生在第22,23題中任選一題作答.如果多做,則按所做的第一題計分.)[選修4-4:坐標系與參數(shù)方程](10分)
-
22.在直角坐標系xOy中,曲線C1的參數(shù)方程為:
(t為參數(shù),x=tcosαy=1+tsinα),以坐標原點為極點,x軸的非負半軸為極軸建立坐標系,曲線C2的極坐標方程為ρcosθ=4tanθ.α∈(0,π2)
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)已知點P(0,1),設(shè)曲線C1與曲線C2的交點分別為A,B,若,求α.PA?PB=-2組卷:55引用:3難度:0.7
[選修4-5:不等式選講](10分)
-
23.已知函數(shù)
,g(x)=|kx-4|.f(x)=x2-2x+1
(1)若g(x)≤2的解集為[1,3],求k的值;
(2)若k=1,關(guān)于x的不等式f(x)≥g(x)+a2-4a有解,求實數(shù)a的取值范圍.組卷:19引用:2難度:0.6